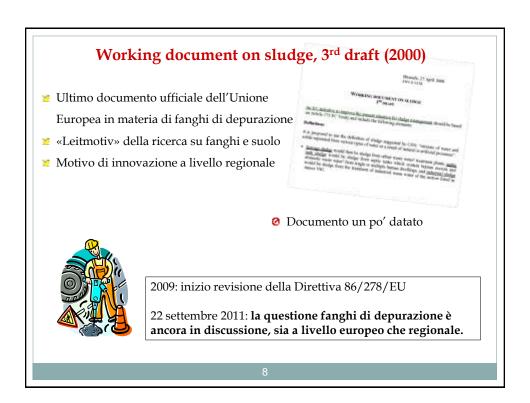


Una matrice diversa...

Fanghi di depurazione:

«<u>residui derivanti da</u>i processi di <u>depurazione delle acque reflue domestiche, urbane o</u> da altri impianti di depurazione delle acque reflue che presentano una composizione <u>analoga</u> a quella delle acque reflue domestiche e urbane».



Caratteristiche medie essenziali:

Materiale organico Sostanza secca variabile(2÷20%): liquidi o palabili Elevato peso specifico Basso C/N (6÷8)

Valutazione della qualità dei fanghi di depurazione alla luce del Working document on sludge

Principali **novità** introdotte **rispetto** alla caratterizzazione prevista dalla normativa italiana (**D.Lgs. 99/92**):

1. Definizione valori limite di concentrazione più restrittivi per metalli pesanti

Elemento	Valore limite (mg/kg s.s.)				
	Direttiva 86/278/CEE	D.Lgs. 99/1992	Working document on sludge		
			Odierno	Medio termine (2015)	Lungo termine (2025)
Cd	20 - 40	20	10	5	2
Cr	-	-	1.000	800	600
Cu	1.000 - 1.750	1.000	1.000	800	600
Hg	16 - 25	10	10	5	2
Ni	300 - 400	300	300	200	100
Pb	750 - 1.200	750	750	500	200
Zn	2.500 - 4.000	2.500	2.500	2.000	1.500

C

- 2. Introduzione valori limite di concentrazione per composti organici (AOX,IPA,...)
- 3. Definizione di metodiche d'analisi standardizzate (CEN, ISO,...)

Composti organici	Valori limite di concentrazione (mg/kg s.s.)	
AOX = TOX = somma dei composti organici alogenati	500	
LAS = linear alchil benzen sulfonati	2.600	
DEHP = Di (2 - etilsif) ftalato	100	
NPE = nonilfenoli e nonilfenoli mono e di etossilati	50	
PAH = idrocarburi policiclici aromatici	6	
PCB = bifenili policlorinati	0,8	
Diossine	Valori limite di concentrazione (ng TE/kg s.s.)	
PCDD/F = dibenzodiossine e dibenzofurani policlorinati	100	

Il caso oggetto di studio:

- Applicazione a caso reale in Provincia di Udine
- La Società Acquedotto Poiana S.p.A. 31 impianti di medie e piccole dimensioni
- Produzione media annua fanghi di depurazione: 1700t (2007 -2009)

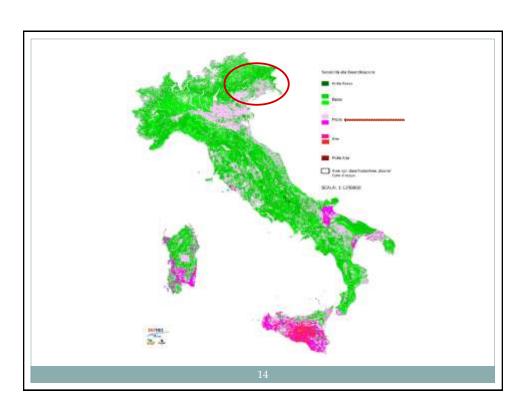
Obiettivo: analisi della qualità di fanghi di depurazione e suoli interessati da applicazioni continue e ripetute.

11

Fase sperimentale 1: caratterizzazione dei fanghi di depurazione

Caratterizzazione dei fanghi di depurazione secondo le linee guida del "Working document on sludge" con creazione di un **protocollo di indagine condiviso dei fanghi di depurazione.**

Analisi 10 campioni rappresentativi di fanghi di depurazione in base a:


- •Tipo di trattamento della linea fanghi
- •Potenzialità d'impianto
- •Caratteristiche acqua reflua trattata
- •Presenza di intrusioni da attività artigianali o industriali

Osservazioni conclusive

- BUONA QUALITA': i fanghi di depurazione analizzati rispondono ai valori limite previsti (D.Lgs. 99/92 e Working document on sludge) e confermano l'idoneità per l'applicazione al suolo.
- NECESSITA' DI MONITORAGGIO E UNIFORMITA' D'AZIONE: nonostante il rispetto dei valori limite suggeriti dal "Working document on sludge" per la quantità di metalli pesanti apportabili annualmente al suolo, le evidenze sperimentali hanno rilevato sia la mancanza della valutazione sulla sostenibilità dell'applicazione di fanghi di depurazione al suolo sia una gestione confusa e imprecisa delle operazioni di campionamento e analisi dei suoli.
- EFFETTO CONCIMANTE: fanghi da impianti di trattamento acque reflue domestiche e urbane di
 piccola e media dimensione risultano un'importante fonte di elementi nutritivi per il suolo,
 soprattutto in considerazione della contingente desertificazione nell'Europa del sud: il 27% del nostro
 territorio è minacciato da processi di inaridimento dei suoli (CONAF).

